La sismicité induite par les injections de fluide permet de mieux comprendre pourquoi les ruptures sismiques s'arrêtent

Jeudi, 21 décembre 2017

Une équipe constituée de chercheurs du laboratoire Géoazur, Université Côte d’Azur, CNRS, Observatoire Côte d’Azur, IRD, du California institute of technology (Caltech, USA) et de la King Abdullah university of science and technology (Kaust, Arabie saoudite) est parvenue à modéliser la rupture sismique induite par une injection de fluide et à comprendre pourquoi cette rupture dynamique s’arrête. Cette nouvelle étude s'appuie sur les observations de la sismicité induite pour faire progresser notre compréhension de la mécanique des tremblements de terre.

Les tremblements de terre provoqués par les injections souterraines de fluide (liquide ou gaz) sont une préoccupation croissante de notre société, et un risque qui doit être maîtrisé afin de développer un avenir énergétique plus sûr et plus propre. La sismicité provoquée par ces injections de fluide offre également une occasion unique d'apprendre davantage sur la physique des tremblements de terre. Pour les chercheurs, c’est un accès privilégié à une expérience à grande échelle sur les tremblements de terre déclenchés par un chargement contrôlée.

Tremblement de terre provoqué par une injection de fluides dans une formation réservoir souterraine traversée par une faille tectonique. La rupture sismique (en orange) s'étend au-delà de la zone pressurisée (en bleu) par les fluides. © Caltech Les tremblements de terre peuvent être déclenchés par l’augmentation de la pression causée par une injection de fluide, mais ils peuvent se propager plus rapidement que la diffusion de la zone pressurisée en puisant dans l'énergie élastique précédemment emmagasinée dans la croûte par les contraintes tectoniques naturelles. En combinant théorie et simulations numériques de ruptures dynamiques, les auteurs ont élaboré un modèle qui explique comment la taille des tremblements de terre provoqués par injection dépend des paramètres d'injection, et principalement du volume net de fluide injecté. Contrairement aux modèles précédents, ce nouveau modèle quantifie jusqu'à quel point un tremblement de terre peut se propager au-delà de la zone pressurisée par l’injection. Les prévisions du modèle sont cohérentes avec les magnitudes maximales observées des séismes induits sur une très large gamme de volumes de fluide injecté, allant de l’échelle du laboratoire (centimètre) aux échelles des expériences in-situ (dizaines de mètres) et des sites profonds de stockage d’énergie (kilomètre).

Ce nouveau travail est non seulement une avancée importante dans l'intégration de la physique de la rupture des tremblements de terre dans la modélisation de la sismicité induite, mais il fournit également un cadre nouveau pour comprendre comment les tremblements de terre naturels s'arrêtent, en particulier ceux qui, comme lors la sismicité induite, s’initient dans de petits volumes de croûte terrestre où les contraintes sont concentrées.

Source(s): 

Induced seismicity provides insight into why earthquake ruptures stop. Martin Galis, Jean Paul Ampuero, Martin P. Mai, and Frédéric Cappa. Science Advances, 2017;3: eaap7528

Contact(s):
  • Jean-Paul Ampuero, Géoazur
    ampuero [at] geoazur [dot] unice [dot] fr
  • Frédéric Cappa, Géoazur
    cappa [at] geoazur [dot] unice [dot] fr, 04 83 61 86 57

La reprise des actualités du site est autorisée avec la mention "Source : Actualités du CNRS-INSU" et un lien pointant sur la page correspondante.